Busing, W.R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Oak Ridge National Laboratory Report ORNL-TM-306.
Chieh, P. C. \& Trotter, J. (1970). J. Chem. Soc. (A), pp. 911-914.
Churchill, M. R. \& Kalra, K. L. (1974). Inorg. Chem. 13, 1065-1071.
Churchill, M. R. \& Veidis, M. V. (1972). J. Chem. Soc. Dalton, pp. 670-675.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.

Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104 109.

Ismailzade, I. G. \& Zhdanov, G. S. (1953). Zh. Fiz. Khim. 27, 550-553.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794 (revised, 1970).
Karipides, A., Forman, C., Thomas, R. H. P. \& Reed, A. T. (1974). Inorg. Chem. 13, 811-815.

Smith, D. L. (1962). PLANET. Ph.D. Thesis, Univ. of Wisconsin, Madison, Wisconsin.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1975). B31, 608

$\mathbf{Z r}_{14} \mathbf{C u}_{51}$ and $\mathbf{H f}_{14} \mathbf{C u}_{51}$ with $\mathbf{G d A g}_{3 \cdot 6}$ Structure Type

By J.-P.Gabathuler, P. White and E. Parthé
Laboratoire de Cristallographie aux Rayons X de l'Université de Genève, 32 Bd d'Yvoy, CH-1211 Genève 4, Switzerland

(Received 24 September 1974; accepted 11 October 1974)

Abstract

Hf}_{14} \mathrm{Cu}_{51}\), hexagonal, $P 6 / m$ (No. 175), $a=$ $11 \cdot 18$ (1), $c=8 \cdot 235$ (5) $\AA, U=1782 \cdot 8 \AA^{3}, Z=1$, F.W. $5739 \cdot 4, D_{x}=10 \cdot 69 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2487$. Counter technique, absorption correction, direct methods, least-squares refinement. $R=0.085$ for 568 reflexions. $\mathrm{Zr}_{14} \mathrm{Cu}_{51}(a=11 \cdot 25$ (1), $c=8.275(10) \AA)$ and $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ are isotypic with $\mathrm{GdAg}_{3.6}$.

Introduction. In the Cu -rich part of the system $\mathrm{Hf}-\mathrm{Cu}$ the phases HfCu_{4} and HfCu_{5} of unknown structure have been reported recently by Perry (1974). Phases of the same composition were found in the system Zr-Cu (Perry \& Hugi, 1972).
Samples of composition HfCu_{4} and ZrCu_{4} were prepared by arc melting the component elements under purified argon atmosphere (Hf $99.9 \%, \mathrm{Zr} 99.9 \%$, Cu 99.999%). The alloying of Cu with Hf or Zr leads to an appreciable increase in hardness. It was possible to isolate small single crystals of $\mathrm{ZrCu}_{\sim 4}$ and $\mathrm{HfCu}_{\sim 4}$ ($\sim 40 \mu \mathrm{~m}$ diameter). Precession and Weissenberg photographs showed that the two compounds, later to be described by the formulae $\mathrm{Zr}_{14} \mathrm{Cu}_{51}$ and $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$, were isotypic and that they crystallized with a hexagonal cell with $\mathrm{Zr}_{14} \mathrm{Cu}_{51}: a=11 \cdot 25$ (1), $c=8 \cdot 275$ (10) $\AA ; \mathrm{Hf}_{14} \mathrm{Cu}_{51}: a=11 \cdot 18$ (1), $c=8 \cdot 235$ (5) \AA.
As there were no systematic extinctions and the crystals show low hexagonal Laue symmetry, the possible space groups were $P 6, P \overline{6}$ and $P 6 / m$.

A structure analysis was performed on the $\mathrm{HfCu}_{\sim 4}$ single crystal. 568 non-equivalent intensities were measured on a Philips four-circle automatic diffractometer with graphite-monochromatized Mo $K \alpha$ radiation. Correctionfor absorption $\left[\mu\left(\mathrm{Hf}_{14} \mathrm{Cu}_{51}\right)=734 \mathrm{~cm}^{-1}\right]$ was made (de Meulenaer \& Tompa, 1965). The structure was
solved by direct methods with the program LSAM (Main, Woolfson \& Germain, 1972). The E map showed that the proper space group was $P 6 / m$, and it also allowed 14 Hf atoms and 48 Cu atoms to be located. A Fourier map showed three further Cu atoms distributed at random over six sites. The true composition of this compound is therefore $\mathrm{Hf}_{14} \mathrm{Cu}_{5_{1}}$ with a calculated density of $10.69 \mathrm{~g} \mathrm{~cm}^{-3}$. The final positional parameters refined after applying anomalous dispersion corrections (International Tables for X-ray Crystallography, 1968) and using the least-squares program in the X-RAY system (1972) are given in Table 1.* The scattering factors have been generated with analytical

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30719 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 INZ, England.

Table 1. Positional parametersfor $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ with $\mathrm{GdAg}_{3.6}$ structure type.
Space group $P 6 / m$ (No. 175). The temperature factor is given by the equation $T=\exp \left[-2 \pi^{2} \cdot 10^{-2} U(2 \sin \theta / \lambda)^{2}\right]$.

		x	y	z	$U\left[\AA^{2}\right]$
$2 \mathrm{Hf}(1)$	2(e)	0	0	$0 \cdot 3114$ (7)	$0 \cdot 2$ (1)
$6 \mathrm{Hf}(2)$	6(j)	$0 \cdot 1138$ (4)	$0 \cdot 3893$ (4)	0	$0 \cdot 7$ (1)
$6 \mathrm{Hf}(3)$	$6(k)$	$0 \cdot 4712$ (3)	$0 \cdot 1417$ (3)	$\frac{1}{2}$	$0 \cdot 4$ (1)
$2 \mathrm{Cu}(1)$	2(c)	$\frac{1}{3}$	$\frac{2}{3}$	0	$0 \cdot 7$ (4)
$4 \mathrm{Cu}(2)$	4(h)	$\frac{1}{3}$	$\frac{2}{3}$	$0 \cdot 2931$ (14)	$0 \cdot 3$ (2)
$6 \mathrm{Cu}(3)$	$6(k)$	0.0611 (10)	$0 \cdot 2403$ (9)	$\frac{1}{2}$	$0 \cdot 2$ (2)
$12 \mathrm{Cu}(4)$	12(l)	$0 \cdot 1914$ (7)	$0 \cdot 2651$ (7)	$0 \cdot 2365$ (8)	$0 \cdot 7$ (2)
$12 \mathrm{Cu}(5)$	12(l)	0.4942 (7)	$0 \cdot 1163$ (7)	$0 \cdot 1520$ (8)	$0 \cdot 5$ (1)
$12 \mathrm{Cu}(6)$	12(l)	$0 \cdot 1044$ (6)	$0 \cdot 4373$ (6)	$0 \cdot 3296$ (8)	$0 \cdot 4$ (1)
$3 \mathrm{Cu}(7)$	6(i)	$0 \cdot 1146$ (26)	$0 \cdot 1352$ (26)	0	$1 \cdot 9$ (5)

Fig．1．Stereo drawing of copper polyhedra around $\operatorname{Hf}(3)\left(z=\frac{1}{2}\right)$ and $\operatorname{Hf}(1)\left(z \simeq \frac{1}{3}, \frac{2}{3}\right)$ ．

Table 2．Calculated and observed powder pattern for $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ with $\mathrm{GdAg}_{3.6}$ structure type
$\mathrm{Cu} K \alpha$ radiation（ $\lambda=1.5418 \AA$ ），Guinier－Nonius camera， SiO_{2} monochromator．
$I_{h k l}=\mathrm{Lp} m F_{h k l}^{2}$ where $\mathrm{Lp}=\left(1+0.7987 \cos ^{2} 2 \theta\right) /\left[\sin \theta . \cos ^{2}(2 \theta-\right.$ $\left.\left.30^{\circ}\right) \cdot \sin 2 \theta\right]$

$h k i l$	$10^{3} \cdot \sin ^{2} \theta_{c}$	$10^{3} \cdot \sin ^{2} \theta_{o}$	I_{c}	I_{0}
10 10	$6 \cdot 3$		$2 \cdot 6$	
0001	8.7		$9 \cdot 6$	
10 T 1	$15 \cdot 1$		$0 \cdot 0$	
$11 \overline{2} 0$	$19 \cdot 0$		$0 \cdot 4$	
2020	$25 \cdot 4$		$3 \cdot 3$	
1121	$27 \cdot 8$	$27 \cdot 6$	$21 \cdot 1$	w
2021	$34 \cdot 1$		$13 \cdot 7$	
0002	$35 \cdot 0$	$34 \cdot 9$	$74 \cdot 9$	m
1012	$41 \cdot 3$	$41 \cdot 3$	59.7	$m w$
21530	$44 \cdot 4$ ，	$44 \cdot 1$	$56 \cdot 5$ 59．7	
1230	44．4	$44 \cdot 1$	$59 \cdot 7$ ，	m
	$53 \cdot 1\}$	53•1	$197 \cdot 1$	s
$12 ⿳ 亠 丷 厂$	$53 \cdot 1\}$	$53 \cdot 1$	198.7 f	s
1122	54.0	53.9	55.5	$m w$
3030	$57 \cdot 1$		$9 \cdot 0$	
$20 \frac{2}{2}$	$60 \cdot 4$	$60 \cdot 0$	$30 \cdot 1$	w
3031	$65 \cdot 8$	$65 \cdot 7$	$14 \cdot 7$	vow
2240	$76 \cdot 1$		$3 \cdot 2$	
0003	78.8		$3 \cdot 2$	
$12 ⿳ 亠 丷 厂 彡$	$79 \cdot 4\}$	79.3	35．1	$m w$
2132	$79 \cdot 4$ \}	793	$31 \cdot 2$	mw
340	$82 \cdot 4$	$82 \cdot 6$	15．2	
140	$82 \cdot 4$	$82 \cdot 6$	$140 \cdot 3$	$m s$
2241	$84 \cdot 8$	85.0	38.9	
0 I 3	$85 \cdot 1$ \}	85.0	22.9	$m w$
341	91.2		8.9	
3141	91.2 \}		$0 \cdot 8$ \}	
3032	$92 \cdot 1$	$92 \cdot 2$	$34 \cdot 0$	w
1123	97.8	$97 \cdot 8$	$33 \cdot 1$	w
4040	$101 \cdot 4$	$101 \cdot 7$	$64 \cdot 9$	$m w$
$20 \overline{2}$	104．1		$0 \cdot 8$	
4041	$110 \cdot 2$		$32 \cdot 5$	
2242	$111 \cdot 1$	$110 \cdot 8$	$102 \cdot 7$	$m s$
1342	117.4 \}	$117 \cdot 6$	493.9 \}	vs
314	117.4	117.6	97.8 ，	vs
2 3	$120 \cdot 5$	$120 \cdot 6$	$73 \cdot 0$	m
$\begin{array}{llllll}3 & 2 & 5 & 0 \\ 2 & 1 & 3 & 3\end{array}$	$120 \cdot 5$	120.6	$10 \cdot 2$	
2133	$123 \cdot 2$	123.2	$1000 \cdot 0$	vos
1233	$123 \cdot 2$ \｛	123.2	302.7 ，	vos
$\begin{array}{lllll}3 & 2 & 5 & 1 \\ 2 & 3 & 5 & 1\end{array}$	$129 \cdot 2$	129.3	$83 \cdot 1$	$m s$
$\begin{array}{lllll}2 & 3 & 5 & 1 \\ 4 & 1 & 5 & 0\end{array}$	129．2	$129 \cdot 3$	57.2 ，	ms
3033	$135 \cdot 8$ \}		$244 \cdot 8$	
4042	$136 \cdot 5\}$	$136 \cdot 0$	56.4 \}	s
0004	$140 \cdot 0$	$140 \cdot 0$	$145 \cdot 7$	$m s$
4151	141.9 ］	141.5	$363 \cdot 7$ \}	
1451	141.9 \}	$141 \cdot 5$	$26 \cdot 4$ ）	s
10 T 4	$146 \cdot 4$		$30 \cdot 4$	
2243	$154 \cdot 9$ ］		$98 \cdot 6$	
3252	$155 \cdot 5$	$155 \cdot 2$	8.0	m ，diff．
2352	$155 \cdot 5$		119.3	
5050	$158 \cdot 5$	$158 \cdot 6$	$67 \cdot 9$	m

functions（Cromer \＆Mann，1968）．The weighting scheme was unity and the number of parameters re－ fined was 30 ．The residual $R=\Sigma\left|F_{o}-\left|F_{c}\right|\right| / \Sigma F_{o}$ for 470 reflexions with $F_{o}>2 \sigma$ is 8.5% ．A refinement of the occupation parameter of $\mathrm{Cu}(7)$ on site $6(j)$ gave a value of $47 \pm 3 \%$ ．From simple geometric considera－ tions this sixfold site cannot be occupied by more than three atoms．A comparison between the observed powder reflexions for $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ and those calculated （Yvon，Jeitschko \＆Parthé，1969）is given in Table 2.

Discussion．In Figs． 1 and 2 are shown two stereo drawings of the $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ structure projected along \mathbf{c} （ORTEP，Johnson，1970）．The first represents the Cu polyhedra around $\operatorname{Hf}(3)\left(z=\frac{1}{2}\right)$ and $\operatorname{Hf}(1)\left(z \simeq \frac{1}{3}, \frac{2}{3}\right)$ ，the second the polyhedra around $\operatorname{Hf}(2)(z=1)$ and $\operatorname{Hf}(1)$ $\left(z \simeq \frac{2}{3}, \frac{4}{3}\right) \cdot \mathrm{Hf}(2)$ and $\mathrm{Hf}(3)$ have 14 －coordination， $\mathrm{Hf}(1)$ 16 －coordination．There is only one Hf－Hf bond of $3 \cdot 1 \AA$ between two $\mathrm{Hf}(1)$ atoms．
$\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ reveals a striking resemblance to the struc－ ture of $\mathrm{GdAg}_{3 \cdot 6}$ recently determined by Bailey \＆Kline （1971）．Within the limits of error the two are identical and isotypic．The compounds $\mathrm{T}_{14} \mathrm{~B}_{51}$ already known to have this structure type are rare－earth－silver alloys （ $\mathrm{T}=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}$ and Y） studied by McMasters，Gschneidner \＆Venteicher （1970）and rare－earth－gold alloys（ $\mathrm{T}=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}$ ， $\mathrm{Sm}, \mathrm{Gd}, \mathrm{Tb}$ ，Dy and Ho）investigated by McMasters， Gschneidner，Bruzzone \＆Palenzona（1971）．If all the known compounds with this structure type are plotted according to the value of the radius ratio $r_{T} / r_{\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}}$ （Fig．3）it can be seen that they lie within a narrow radius－ratio range from 1.22 to $1 \cdot 31$ ．With smaller radius－ratio values the MoNi_{4} or the ZrAu_{4} types occur which have smaller coordination polyhedra compared with GdAu_{36}［see for example the survey by Steeb， Gebhardt \＆Reule（1972）］．
The reasons for the random occupations of site $6(j)$ by $3 \mathrm{Cu}(7)$ atoms are not obvious．In an attempt to check that ordering does not occur ar 0 kl precession photograph of $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ was exposed for 2 weeks． Very weak superstructure reflexions appeared，indicat－ ing that the dimension of the crystallographic cell has to be doubled along \mathbf{c} ．A study of this superstructure is in progress．

We thank Dr A．J．Perry，from the Brown Boveri Research Centre， 5401 Baden，Switzerland，for having pointed out the interest of these compounds．

Fig. 2. Stereo drawing of copper polyhedra around $\operatorname{Hf}(2)(z=1)$ and $\operatorname{Hf}(1)\left(z \simeq \frac{2}{3}, \frac{4}{3}\right)$.

References

Bailey, D. M. \& Kline, G. R. (1971). Acta Cryst. B27, 650-653.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1970). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
McMasters, O. D., Gschneidner, K. A. Jr, Bruzzone, G. \& Palenzona, A. (1971). J. Less-Common Met. 25, 135-160.
McMasters, O. D., Gschneidner, K. A. Jr \& Venteicher, R. F. (1970). Acta Cryst. B26, 1224-1229.

Main, P., Woolfson, M. M. \& Germain, G. (1972). LSAM: A System of Computer Programs for the Automatic Solution of Centrosymmetric Crystal Structures. Dept. of Physics, Univ. of York, York, England and Laboratoire de Chimie Physique, Université de Louvain, 39 Schapenstraat, Leuven, Belgium.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Perry, A. J. (1974). Mater. Sci. Eng. 13, 57-62.
Perry, A. J. \& Hugi, W. (1972). J. Inst. Met. 100, 378380.

Fig. 3. Radius-ratio values for compounds with $\mathrm{GdAg}_{3.6}$ (circles) and MoNi_{4} or ZrAu_{4} structure types (squares). Metallic radii for coordination number 12 according to the periodic table of elements of Sargent-Welch.

Steeb, S., Gebhardt, E. \& Reule, H. (1972). Mh. Chem. 103, 716-735.
X-RAY system (1972). Tech. Rep. TR-192 of the Computer Science Center, Univ. of Maryland.
Yvon, K., Jeitschio, W. \& Parthé, E. (1969). A Fortran IV Program for the Intensity Calculation of Powder Patterns. Univ. de Genève, Laboratoire de Cristallographie aux Rayons \mathbf{X}.

Acta Cryst. (1975). B31, 610

1,2,3,4,4a $\alpha, 5,11 \mathrm{a} \alpha$-Heptahydroacetoxy-11 $\beta \boldsymbol{H}$-dibenz[b,e]azepine-6-one

By Judith L. Flippen
Naval Research Laboratory, Washington, D.C. 20375, U.S.A.

(Received 4 September 1974; accepted 11 October 1974)

Abstract

C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}\), monoclinic, $P 2_{1} / c, a=9 \cdot 462$ (4), $b=16.082$ (6), $c=10.280$ (6) $\AA, \beta=110.9(1)^{\circ}, Z=4$, $D_{\text {calc }}=1.24 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by the symbolic addition procedure and refined by full-matrix least-squares calculations to a final R value of 4.8%. The molecule has a cis junction between the sevenmembered ring and the saturated six-membered ring and the peptide group which is part of the sevenmembered ring is planar.

Experimental. One method of preparing benzazepinones is by carrying out a Norrish type II photoreaction (Wagner, 1971) on N-alkylated phthalimides (Kana-
oka, Migita, Koyama, Sata, Nakai \& Mizoguchi, 1973). The benzazepinone to be discussed here was obtained as one of the products in such a reaction (Kanaoka, Koyama, Flippen, Karle \& Witkop, 1974). Crystals used in the X-ray analysis were provided by Dr B. Witkop of the National Institutes of Health. An automatic computer-controlled diffractometer was used to collect 2346 independent reflections from a colorless crystal ($\sim 0.40 \times 0.45 \times 0.16 \mathrm{~mm}$) with $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.54178 \AA, \mathrm{Ni}$ filter). Data were collected by the $\theta-2 \theta$ scanning technique ($\max \sin \theta / \lambda=0.521$) over a scan width of 1.75° and at a scanning speed of 2° $\min ^{-1}$.

